
EventFlow: Network Flow Aggregation Based on
User Actions

Petr Velan
CESNET z. s. p. o.

Prague, Czech Republic
petr.velan@cesnet.cz

Abstract—Network flow monitoring is being supplemented by
an application flow visibility to provide more detailed information
about a network traffic. However, the current concept of flows
does not provide a mechanism to keep track of a semantic rela-
tions between individual flows that are created as a part of a single
user action. We propose an extension to the flow measurement,
called EventFlow, which allows to preserve relations between
HTTP and DNS application flows that are a part of single user
action, most typically browsing to a web page. We describe an
architecture of the EventFlow extension and its limitations. A
prototype implementation of the EventFlow is introduced and
evaluated on a packet trace from an ISP network. We show that
a significant number of flow records can be recognised as a part
of a single user action.

I. INTRODUCTION

The growth of cloud-based services increases the im-
portance of network monitoring. Information about network
traffic behaviour can not only provide valuable information
for performance optimisation of applications and infrastructure
but also help to detect and mitigate attacks on applications
and their users. To better facilitate these demands the network
traffic monitoring solutions are starting to provide application
visibility [1], [2].

Application flow monitoring parses data from application
headers and adds application specific elements to flow records.
This way the information from application level can be easily
transferred to flow collectors, stored and utilised together with
the information about the network communication. Current
approach is to treat separate application protocols individually,
e.g. develop an application processing module for each mon-
itored protocol [3]. However, connections between different
protocols are lost in this scenario. For example, when a user
wants to access a web page, several different flows records
are created. The DNS server must be contacted to resolve the
hostname of the web page to an IP address. After the basic
document is loaded, the user’s browser automatically loads
linked content such as images, cascading style sheets, and java
script libraries. The generated requests are recorded as flows,
however little relation between the flows is preserved.

Information about relations between individual flows can
be useful in several scenarios. First, when an advertisement
on some page contains malware, the original page can be
determined using the relation and notified of the malicious con-
tent. Second, aggregates of the related flows can be created to
simplify behavioural analysis of the network traffic. Moreover,
the analysis can use the additional information to improve its

accuracy. Last, traffic classification engines can also benefit
from having access to information about flow relations [4].

In this paper we present a flow monitoring extension,
called EventFlow, which allows to keep track of relations
between HTTP and DNS application flows. Information about
flow relation is inserted to flow records to keep track of
individual user actions i.e. events. We develop a prototype
of the EventFlow extension and evaluate its properties on a
network traffic trace from an ISP network. Results show that at
least 10 % of HTTP and DNS flow records form more complex
events. We believe that this is only a lower bound and that
further improvements can be made to relate even more flows
into events.

The rest of the paper is structured as follows. Related
work is surveyed in Section II. We propose the architecture of
EventFlow measurement in Section III. Section IV describes
the implementation of the EventFlow prototype. Experimental
evaluation of the EventFlow prototype is performed in Sec-
tion V. The paper is concluded in Section VI.

II. RELATED WORK

Madhyastha and Krishnamurthy [5] propose a generic lan-
guage for application-specific flow sampling. Their language
allows applications to select flows with special properties so
that the negative impact of sampling on these applications is
minimised. This can be useful for intrusion detection systems
or traffic classification applications. Although the goal of this
work is different from ours, it also aims to improve the
collected data so that traffic analysis applications can achieve
higher accuracy.

Authors of [6] also focus on improving quality of sampled
flow data. They show that the traffic classification accuracy
can be increased using related sampling, which gives higher
probability to connections that are a part of the same applica-
tion. Authors propose to use a source IP address as a measure
of relation between connection sessions.

Hu et al. [7] propose an entropy based aggregation system
to mitigate an impact of DoS attacks and worm spreads
on a network monitoring system. The main contribution of
their approach is a flow key attribute selection algorithm that
chooses key attributes by which the flows are aggregated. Two
dimensional hash table is used to implement their approach.
The aggregated flows are called metaflows. The main differ-
ence from EventFlow is that we label existing flows belonging
to same user action, while the metaflow is a substitute flow
for many flows created during an malicious network activity.



HTTP Request HTTP Response

DNS RequestDNS Response

2)

1)

3)

4)

5)

Fig. 1. Relations between HTTP and DNS requests and responses.

Dolberg et al. [8] introduce a multidimensional flow aggre-
gation aimed to reduce the volume of collected data. Authors
use tree structures for storing the data by chosen dimension
such as IP addresses or ports. EventFlow proposed in our work
might be used in this scenario to aggregate flows by the same
events.

The usual approach to reduce the volume of collected data
is to use sampling. Estan et al. [9] propose to use adaptive
sampling rate to achieve highest possible accuracy within
given data collection constrains. Their main contribution is a
system for renormalisation of flow entries after the sampling
rate was changed. Authors propose an extension to standard
flow counting that increases the accuracy of the counters for
sampled flow.

III. EVENTFLOW ARCHITECTURE

This section describes the architecture of the EventFlow
monitoring. The goal is to label all flows that are the results
of a single user action with the same event identifier (EID). For
example, accessing http://www.w3.org/ creates 1 DNS request,
37 HTTP requests, and 8 HTTPS requests. We aim to assign
a single unique EID to the flows generated for all DNS and
HTTP requests.

Four basic types of flows are recognised by the EventFlow,
HTTP requests, HTTP responses, DNS requests and DNS
responses. There are relations between these types of flows
in the network traffic, as shown in Figure 1. When HTTP
request to a new site is performed, the IP address of the site
must be resolved first. Therefore, a DNS request is created.
After the request is observed, a reply follows, which results in
the relation 1). After the DNS reply arrives, the client knows
the IP address of the server and makes the HTTP request,
which creates the relation 2). An HTTP response follows the
request, as indicated by the relation 3). The HTTP response
can contain an HTML page which links to several additional
resources such as external style sheets or images. The loading
of these resources triggers more HTTP requests, resulting in
relation 4). When these requests point to previously unresolved
domains, new DNS requests are created, which introduces the
relation 5).

We base the EventFlow architecture on the relations be-
tween the requests and responses. When an HTTP or a DNS
flow is encountered, we must make sure that it is assigned the
same EID as the related flows. Therefore, we create four sets of
records: expected HTTP requests, expected HTTP responses,
expected DNS requests and expected DNS responses. When
processing an HTTP or a DNS flow, we add new record to the
set or sets it relates to. Then, when a next flow is processed,

it is matched against appropriate expected set to see whether
it is a part of existing event. If it is, an EID of the event
is assigned to the flow record. For example, when a DNS
response is encountered, a new record is put into the expected
HTTP requests set (because of relation 2), see Figure 1). Then,
when an HTTP request is processed, we check the expected
HTTP requests set to see whether we are expecting this request
based on a previous DNS response. If the request is matched,
it is assigned the same EID as the DNS response.

TABLE I. MATCHED FLOW PROPERTIES.

So
ur

ce
IP

D
es

tin
at

io
n

IP

D
es

tin
at

io
n

Po
rt

U
R

L

D
om

ai
n

D
N

S
Tr

an
sa

ct
io

n
ID

Expected HTTP Request 3 3 3
Expected HTTP Reply 3 3 3
Expected DNS Request 3 3
Expected DNS Reply 3 3 3 3

Each of the sets of expected records uses different flow
properties to match a flow record. When matching an HTTP
request flow against the expected HTTP requests set, the
source IP address of the flow must match as well as the
requested domain on the URL, if available. Checking the
source IP address ensures that flows from different hosts are
not combined into a single event. A domain name is checked
for the records that were inserted in the set when DNS reply
was encountered. In case an HTTP response caused the record
to be inserted, a full URL is available, not only a domain name.
Replies are checked based on IP addresses and destination port.
Source port is not checked since the services are expected
to run on standard well-known ports. The DNS reply is also
checked for transaction ID, which is an unique identifier tying
the request and response. List of the used properties is provided
in the Table I.

An expiration of the records from the expected sets must
be ensured. When a record from any of the expected sets is
matched, it is removed. However, many records are inserted
that will not be ever matched. For example, when a DNS
request is made to accommodate a different service than HTTP,
the expected HTTP request might never appear. We need to
free such records from the sets eventually. A timeout is used
to keep the expected sets from being congested by redundant
records. A timestamp is assigned to each record upon insertion
to a set. Then, each time a set is searched, records older than
the timeout are removed. The timeout should be as short as
possible to avoid blending of several events. However, it should
be at least as long as it takes to process the longest user
action, which might be up to a couple of seconds in case of
complicated queries to slow sites.

There are several caveats to our approach and some lim-
itations of the architecture that should be addressed in the
future. Our approach does not handle HTTP redirection codes,
therefore the first request and HTTP 3xx redirection response
are assigned different EID than the subsequent request to the
resource. This problem can be rectified simply by adding a
handler for the HTTP 3xx redirection responses that will put

http://www.w3.org/


Flow Cache

IPFIX

Layer 3
Layer 4

HTTP

URLs

Applications

DNS

Packet Parser

Packets Partial Flow

+ URLs

Insert
Update

Release

EvenFlow
Expected Sets

Flow

+EID
Export

Protocol

Fig. 2. EventFlow prototype schema.

a new record with the redirect URL to the expected HTTP
requests set.

Another limitation of our approach is that the URLs are
only extracted from HTML documents. However, modern web
sites often use a JavaScript code to request additional resources
through the Ajax technique. Such requests cannot be easily
matched to an event since it would require to reconstruct the
complete web page and process the included JavaScript code,
which is unfeasible for the flow monitoring system.

There are also several caveats that cannot be avoided.
Some of the requested documents might be cached by the
clients which would cause EventFlow to loose track of related
URLs. However, cached DNS queries are of no consequence
to the EventFlow since no traffic is generated for them and no
information about a flow relation is lost. And last, the growing
deployment of HTTPS reduces the usefulness of the EventFlow
for HTTP protocol. Nevertheless, it can always be used in
environments utilising an HTTPS proxy such as data centres
or enterprise networks.

IV. EVENTFLOW PROTOTYPE

We build the EventFlow prototype as a plugin for Flow-
Mon [10] flow monitoring software. FlowMon exporter is
a flexible flow exporter that provides support for various
extensions. These extensions are used to provide support for
additional packet inputs, application protocol processing and
various export protocols. We utilise the capabilities of the
exporter to provide an EventFlow extension plugin.

The FlowMon exporter consists of three main components
as shown in Figure 2. The first component is a packet parser.
It receives packets from network and extracts information
from different layers of each packet. The extracted information
is used to create a partial flow record, which contains all
necessary information about the parsed packet such as IP
addresses, ports, timestamps, byte counter, etc. It also contains
application layer information when application parsing is used.
The partial flow record is passed to the second component of
the exporter which is the flow cache. The partial record is
either inserted as a new flow record or it is used to update
an existing flow record, which is an aggregation of previous
partial flow records. When the flow expires, it is released from
the flow cache to the export component. The purpose of the
export component is to convert raw flow records to flow export
protocol such as NetFlow or IPFIX and pass the flows over
network for further processing.

Plugins that extend the FlowMon exporter to process
specific application layer protocol such as DNS or HTTP

have access to several parts of the flow creation and exporting
process. Each plugin can request to see raw packet payload,
process it and add its own information to flow records, such
as HTTP Host, Content-Type or Response Code. Furthermore,
the plugins are allowed to provide their own functionality for
insert, update and release methods of the flow cache. And last,
each plugin defines how the information inserted into flow
records is exported by the export component.

The EventFlow prototype is implemented in a similar way
as an application protocol extension. However, it also utilises
the data provided by other application plugins. The EventFlow
combines information from DNS and HTTP protocols to
detect relations between flows, therefore it requires the DNS
and HTTP application plugins to be deployed as well. The
prototype extends the packet parser to extract URLs from
HTML pages. These URLs are then sent together with partial
flow record to the flow cache, however, they are newer exported
together with the flow record. When new a flow record is
created in the flow cache, the expected sets (see Section III)
are searched for a match to the new record using DNS, HTTP
and URLs information provided in the partial record. When
a match is found, the new flow records is assigned an Event
ID (8 byte unsigned integer) of the matched record from the
expected sets. If no match is found, new EID is incrementally
assigned to the new flow record. After the flow is expired from
the cache, the EID is a part of the records and is sent by the
export component along with the rest of the flow record.

Using 8 byte integer for EID and assigning it incrementally
to individual events ensures that there will not be any collisions
due to EID overflow in practice. However, an assignment that
is individual for each flow probe and persistent over the reboots
of the system would be required for a real-world deployment.
The EID is assigned only to flows of the HTTP and DNS
traffic, since it would provide no benefit to other flows as
event relation tracking is not implemented for other protocols
yet. Moreover, the size of the flows grows only by 8 bytes at
maximum, which has negligible impact on the flow collector
disk space requirements.

V. EXPERIMENTAL EVALUATION

We evaluate the prototype in two scenarios. First, we assess
the functionality of the prototype on a simple example web
site. Once we have verified the functionality, we run EventFlow
on a packet trace from live network to determine how many
flows can be joined to events in a real traffic. An IPFIXcol [11]
flow collector is used to to collect and process the generated
flows. The collector can be easily configured to work with the
Event ID element.

A. Functional Evaluation

For the first scenario, we create a simple website with
two pages, each linking the other page, displaying an image
and referencing a different JavaScript library. The evaluation
proceeds as follows. We request the first page in a browser and
few seconds after it loads we follow the link to the other page.
The packet trace of these actions is recorded and processed by
the EventFlow prototype and the resulting flows are collected
by the IPFIXcol.



TABLE II. REAL TRAFFIC EVALUATION STATISTICS.

Total Flows 613953
HTTP Requests 33294
HTTP Responses 49753
DNS Requests 197926
DNS Responses 224588
Events with > 1 Flow 28064
Flows in Events with > 1 Flow 55881
All Events 388749
Flows in All Events 418671

We expect to see a flow record for each of the requests
and responses. However, due to HTTP pipelining the whole
communication with the web server hosting the test pages is
done using single connection. Therefore, there is a pair of flows
for the accessing of the two web pages with the linked images
(which were on the same server), two pairs of flows flows for
each off-site JavaScript library and three pairs of DNS flows
for IP address resolution. There are 12 flows created in this
test scenario in total. The 12 flows are divided in two user
events. The first contains flows for two DNS request, HTTP
communication to the web server and download of the first
JavaScript library. The second event does not contain an HTTP
flow due to the HTTP pipelining but contains DNS request and
subsequent download of the second JavaScript library.

The functional evaluation shows that the prototype cor-
rectly recognises related flows and allows to mark them as
a part of the same event.

B. Real Traffic Evaluation

The purpose of the real traffic test is to determine how
many flows can be joined into events. We collect a short
(approximately one minute) trace of 10 million packets from an
ISP network on ports 53 and 80 which are likely to be DNS and
HTTP packets. Table II shows statistics that describe the packet
trace as well as the results of the EventFlow prototype. We can
see that from the total number of more than 600 thousand flows
more than 400 thousand are part of an Event. Furthermore, over
55 thousand flows are part of an event which contains more
than one flow. Therefore we can conclude that more than 10 %
of observed HTTP and DNS flows are recognised as a part of
more complex events by the EventFlow prototype.

The number of flows in complex events is not as high as
might be expected since there is a large number of HTTP and
DNS requests and responses. We believe that this is caused by
quite short time windows of our trace which is likely to have
captured only separate responses and requests. Moreover, we
believe that better results can be achieved by fine-tuning the
timeout of the records in the expected sets of the EventFlow
prototype.

VI. CONCLUSIONS

We have presented an EventFlow monitoring architecture
that allows to keep track of relations between HTTP and DNS
application flows, which can be used to simplify behavioural
analysis of network traffic, improve network threat detection
and network traffic classification. The changes to existing
flow monitoring architecture are negligible, which facilitates
wide deployment. The proposed architecture can be further

extended to handle more complex HTTP communication such
as redirection return codes.

A prototype of EventFlow plugin for FlowMon flow ex-
porter has been evaluated on a trace of 10 million packets.
We showed that more than 10 % of observed HTTP and DNS
flows are recognised as a part of more complex events by our
prototype. We believe that this result will improve on longer
packet trace as well as with more accurate settings of the
prototype. Prospective improvements to the prototype as well
as its more detailed evaluation are left for a future work.

We believe that the network analysis will benefit from the
supplemental information about flow relations. Our work has
shown that it is possible to acquire such information without
significant impact on existing monitoring architecture and that
it is possible extend the flow monitoring to trace the relations
of other application protocols.

Acknowledgements

This material is based upon work supported by the “CES-
NET Large Infrastructure” project LM2010005 funded by
the Ministry of Education, Youth and Sports of the Czech
Republic.

REFERENCES

[1] L. Kekely, J. Kucera, V. Pus, J. Korenek, and A. Vasilakos, “Software
Defined Monitoring of Application Protocols,” Computers, IEEE Trans-
actions on, vol. PP, no. 99, pp. 1–1, 2015.

[2] P. Velan, T. Jirsík, and P. Čeleda, “Design and Evaluation of HTTP Pro-
tocol Parsers for IPFIX Measurement,” in Advances in Communication
Networking, T. Bauschert, Ed., vol. 8115. Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 136–147.

[3] ntop, “nProbe,” online, 2015. [Online]. Available: http://www.ntop.org/
products/netflow/nprobe/

[4] Y. Wang, Y. Xiang, J. Zhang, W. Zhou, and B. Xie, “Internet traffic
clustering with side information,” Journal of Computer and System
Sciences, vol. 80, no. 5, pp. 1021 – 1036, 2014, special Issue on
Dependable and Secure Computing The 9th {IEEE} International
Conference on Dependable, Autonomic and Secure Computing.

[5] H. V. Madhyastha and B. Krishnamurthy, “A Generic Language for
Application-specific Flow Sampling,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 5–16, Mar. 2008.

[6] M. Lee, M. Hajjat, R. R. Kompella, and S. G. Rao, “A Flow Measure-
ment Architecture to Preserve Application Structure,” Comput. Netw.,
vol. 77, no. C, pp. 181–195, Feb. 2015.

[7] Y. Hu, D.-M. Chiu, and J. C. S. Lui, “Entropy Based Adaptive Flow
Aggregation,” IEEE/ACM Trans. Netw., vol. 17, no. 3, pp. 698–711,
Jun. 2009.

[8] L. Dolberg, J. François, and T. Engel, “Efficient Multidimensional
Aggregation for Large Scale Monitoring,” in Proceedings of the 26th
International Conference on Large Installation System Administration:
Strategies, Tools, and Techniques, ser. lisa’12. Berkeley, CA, USA:
USENIX Association, 2012, pp. 163–180.

[9] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a Better
NetFlow,” in Proceedings of the 2004 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications,
ser. SIGCOMM ’04. New York, NY, USA: ACM, 2004, pp. 245–256.

[10] INVEA-TECH a.s., “FlowMon Probe,” online, 2015. [Online].
Available: https://www.invea.com/en/products-and-services/flowmon/
flowmon-probes

[11] P. Velan and R. Krejčí, “Flow Information Storage Assessment Using
IPFIXcol,” in Dependable Networks and Services, ser. Lecture Notes
in Computer Science, R. Sadre, J. Novotný, P. Čeleda, M. Waldburger,
and B. Stiller, Eds., vol. 7279. Heidelberg: Springer Berlin Heidelberg,
2012, pp. 155–158.

http://www.ntop.org/products/netflow/nprobe/
http://www.ntop.org/products/netflow/nprobe/
https://www.invea.com/en/products-and-services/flowmon/flowmon-probes
https://www.invea.com/en/products-and-services/flowmon/flowmon-probes

	I Introduction
	II Related Work
	III EventFlow Architecture
	IV EventFlow Prototype
	V Experimental Evaluation
	V-A Functional Evaluation
	V-B Real Traffic Evaluation

	VI Conclusions
	References

